

Early Identification of Violent Criminal Gang Members

Elham Shaabani Ashkan Aleali Paulo Shakarian

Arizona State University Tempe, AZ shaabani@asu.edu John Bertetto

Chicago Police Department Chicago, IL

CySIS Tech '15

Cyber-Socio Intelligent Systems Laboratory Annual Technical Symposium – August 19, 2015

Challenge

- Can we identify potential violent offenders ahead of time?
 - Not trying to create a crystal ball
 - Instead, try to better use police forces to avoid violence and reduce homicides
 - not to direct arrests, but to direct police presence in time and violent spikes
 - Given:
 - Co-arrestee social network structure
 - Meta-data from the arrest records
 - do not leverage features concerning the race, ethnicity or gender of individuals

Main results

- We leverage a combination of social network analysis and supervised learning
- Precision 0.89, recall 0.78 when the entire social network is known
- Improved precision and recall over currently used approach when the social network is learned over time – producing 4x more true positives

Overview of Network Data

Network Data

Name	Value
Number of records	64466
Violent offense	4450
Homicide	312
Criminal sexual assault	153
Robbery	1959
Aggravated assault	1441
Aggravated battery	896
Non violent offense	60016

August 2011 – August 2014 In Chicago

Highly imbalanced

Network Properties

CO-ARRESTEE NETWORK

6

Many Future Violent Offenders are Known to Law Enforcement

RE-ARREST DISTRIBUTION

Seasonality of Crime

Cyber-Socio Intelligent Systems

boratory

Identifying Violent Offenders

Existing methods

- Past Violent Activities (PVA)
 - If an offender has committed a violent crime in the past, we claim that he will commit a violent crime in the future.

- Two-Hop Heuristic (THH)
 - All neighbors one and two hops away from previous violent criminals

10

Supervised Learning Approach

Supervised learning approaches

- <u>Random Forest</u>
- Naïve Bayes

ntelligent Systems

- Linear Regression
- Decision Tree
- Neural Network
- Support Vector Machine

Features

- Neighborhood Based
- Network Based
- Temporal
- Geographic

Neighborhood-Based Features

Description	Definition
Degree (w.r.t. C)	$ \{u u\in N_v^1\cap V_C\} $
Fraction of 1-hop neighbors com- mitting a crime in C	$ \{u u \in N_v^1 \cap V_C\} / N_v^1 $
Fraction of 2-hop neighbors com- mitting a crime in C	$ \{u u \in N_v^2 \cap V_C\} / N_v^2 $
Majority of 1-hop and 2-hop neigh- bors committing a crime in C	$maj_v(C,1) \wedge maj_v(C,2)$
Minority of 1-hop and majority of 2-hop neighbors comitting a crime in C	$\neg maj_v(C,1) \land maj_v(C,2)$

ntelligent Systems

UNIVERSITY

- Each node and its first/second level neighbors
- maj_v(C,i) is TRUE if at least half of the nodes within a network distance of *i* from node *v* have committed a crime in *C* and FALSE otherwise.

Network-Based Features

Community Based

Intelligent Systems

UNIVERSI'I Y

Description	Definition
$\begin{array}{c} \text{Component} \\ \text{size when } v \text{ is} \\ \text{removed} \end{array}$	$ C(C_v(G)\setminus\{v\}) $
Largest compo- nent size with a violent node after v is removed	$ \begin{split} \max_{v' \in C(C_v(G)\{v\} \cap V_{\mathcal{V}}} X_{v'} \\ \text{where } X_{v'} = C_{v'}(C_v(G)\{v\}) \end{split} $
Group size	$ P_v(G_{gang_v}) $
Relationships within the group	$\begin{array}{lll} \{(u,v) \in & E \ s.t. \ u,v & \in \\ P_v(G_{gang_v})\} \end{array}$
Number of vio- lent members in the group	$ \{v' \in P_v(G_{gang_v}) \ s.t. \ \mathcal{V}_v \neq \emptyset\} $
Triangles in group	No. of triangles within sub- graph $P_v(G_{gang_v})$
Transitivity of group	$\frac{No. of triangles in P_{v}(G_{gang_{v}})}{No. of "\vee"'s in P_{v}(G_{gang_{v}})}$
Group-to-group connections	$\begin{array}{l} \{u \in P_v(G_{gang_v}) \ s.t. \ \exists (u,w) \in \\ E \ where \ w \notin P_v(G_{gang_v}) \} \end{array}$
Gang-to-gang connections	$\begin{array}{ll} \{u \in G_{gang_v} \ s.t. \ \exists (u,w) \in E \\ where \ w \notin G_{gang_v} \} \end{array}$

Path Based

Description	Definition
Betweenness $(w.r.t. C)$	$\sum_{u,w \in V_C} \frac{\sigma_v(u,w)}{\sigma(u,w)}$
Closeness (w.r.t. C)	$(V_C -1)/\sum_{u\in V_C} d(u,v)$
$\begin{array}{cc} \text{Shell} & \text{Number} \\ (\text{w.r.t. } C) \end{array}$	$shell_C(v)$ (see appendix for further details)
Propagation (w.r.t. C)	1 if $v \in \Gamma_{\kappa}(V_{\mathcal{V}})$, 0 otherwise. (see appendix for further de- tails)

 Leveraged the intuitions from social network analysis and criminology to generate new and useful features

Geographic Features

Name	Definition
District Fre- quency	$\begin{array}{ll} \{(t,v') s.t. arr_{v'}^t \ = \ true \ \land \\ \exists t' \ s.t. \ dstr_{v'}^t = distr_{v}^{t'} \} \end{array}$
Beat Frequency	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Beat Violence	$\begin{aligned} \{(t,v') \ s.t. \ arr_{v'}^t = true \land \mathcal{V}_{v'}^t \neq \\ \emptyset \land \exists t' \ s.t. \ beat_{v'}^t = beat_v^{t'} \} \end{aligned}$
District Violence	$\begin{array}{l} \{(t,v') \ s.t. \ arr_{v'}^{t} = true \land \mathcal{V}_{v'}^{t} \neq \\ \emptyset \land \exists t' \ s.t. \ dstr_{v'}^{t} = distr_{v}^{t'} \} \end{array}$

- Capture the information related to the location of a crime incident
- In accordance with well known literature in criminology

Temporal Features

Name	Definition
Average interval time (w.r.t. C)	$\sum_i \Delta_i^v(C)/ t_C^v $
Number of vio- lent groups	$\begin{split} \{t \ s.t. \ arr_v^t = true \land \\ \exists v' \ s.t. \ arr_{v'}^t = true \land \\ \mathcal{V}_v^t \neq \emptyset \land \\ v' \in N_v^t \} \end{split}$

Results: Known Co-Arrestee Network

Classification using Single Feature Categories

Network based is highly correlated to violent behaviour

■ Non violent

Minority of 1-hop and majority of 2-hop neighbors committing a violent crime (Neighborhood-Based)

Cyber-Socio

ARIZONA

UNIVERSITY

Intelligent Systems Laboratory

Closeness (Network-Based)

18

Results: social network known

 Significant improvement in performance over currentlyused method

Cyber-Socio

Intelligent Systems Laboratory

Social-Network Based Features

Previous work in criminology focuses primarily on temporal and geographic features. We found networkbased features to be more powerful

20

Cyber-Socio

ntelligent Systems

Results: Co-Arrestee Network Learned Over Time

Network Properties

ARIZONA STATE UNIVERSITY

Cyber-Socio Intelligent Systems

Results: social network learned over time

THH FRF •• RF •• PVA

ARIZONA STATE UNIVERSITY

Cyber-Socio Intelligent Systems

oratory

FRF III RF ≡ THH

Results: social network learned over time

24

Ongoing works

- Now we are working with the Chicago Police Department to deploy this work in an operational setting.
- A provisional patent has also accepted

Conclusion

- Strong relationship between network-based features and violent crimes
- F1 score of 0.83 for the known social network
- Producing 4X more true positive if the network is discovered over time

Thank You

Cyber-Socio Intelligent Systems Laboratory Annual Technical Symposium – August 19, 2015

