Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

只需一张图片、一句动作指令,Animate124轻松生成3D视频

Animate124,轻松将单张图片变成 3D 视频。

近一年来,DreamFusion 引领了一个新潮流,即 3D 静态物体与场景的生成,这在生成技术领域引发了广泛关注。回顾过去一年,我们见证了 3D 静态生成技术在质量和控制性方面的显著进步。技术发展从基于文本的生成起步,逐渐融入单视角图像,进而发展到整合多种控制信号。

与此相较,3D 动态场景生成仍处于起步阶段。2023 年初,Meta 推出了 MAV3D,标志着首次尝试基于文本生成 3D 视频。然而,受限于开源视频生成模型的缺乏,这一领域的进展相对缓慢。

然而,现在,基于图文结合的 3D 视频生成技术已经问世!

尽管基于文本的 3D 视频生成能够产生多样化的内容,但在控制物体的细节和姿态方面仍有局限。在 3D 静态生成领域,使用单张图片作为输入已经能够有效重建 3D 物体。由此受到启发,来自新加坡国立大学(NUS)和华为的研究团队提出了 Animate124 模型。该模型结合单张图片和相应的动作描述,实现了对 3D 视频生成的精准控制。

图片

  • 项目主页: https://animate124.github.io/
  • 论文地址: https://arxiv.org/abs/2311.14603
  • Code: https://github.com/HeliosZhao/Animate124

图片

核心方法

方法概括

根据静态和动态,粗糙和精细优化,本文将 3D 视频生成分为了 3 个阶段:1)静态生成阶段:使用文生图和 3D 图生图扩散模型,从单张图像生成 3D 物体;2)动态粗糙生成阶段:使用文生视频模型,根据语言描述优化动作;3) 语义优化阶段:额外使用个性化微调的 ControlNet,对第二阶段语言描述对外观造成的偏移进行优化改善。

图片

图 1. 整体框架

静态生成

本文延续 Magic123 的方法,使用文生图(Stable Diffusion)和 3D 图生图(Zero-1-to-3)进行基于图片的静态物体生成:

图片

对于条件图片所对应的视角,额外使用损失函数进行优化:

图片

通过上述两个优化目标,得到多视角 3D 一致的静态物体(此阶段在框架图中省略)。

动态粗糙生成

此阶段主要使用文生视频扩散模型,将静态 3D 视为初始帧,根据语言描述生成动作。具体来说,动态 3D 模型(dynamic NeRF)渲染连续时间戳的多帧视频,并将此视频输入文生视频扩散模型,采用 SDS 蒸馏损失对动态 3D 模型进行优化:

图片

仅使用文生视频的蒸馏损失会导致 3D 模型遗忘图片的内容,并且随机采样会导致视频的初始和结束阶段训练不充分。因此,本文的研究者们对开始和结束的时间戳进行过采样。并且,在采样初始帧时,额外使用静态函数进行优化(3D 图生图的 SDS 蒸馏损失):

图片

因此,此阶段的损失函数为:

图片

语义优化

即使采用了初始帧过采样并且对其额外监督,在使用文生视频扩散模型的优化过程中,物体的外观仍然会受到文本的影响,从而偏移参考图片。因此,本文提出了语义优化阶段,通过个性化模型对语义偏移进行改善。

由于仅有单张图片,无法对文生视频模型进行个性化训练,本文引入了基于图文的扩散模型,并对此扩散模型进行个性化微调。此扩散模型应不改变原有视频的内容和动作,仅对外观进行调整。因此,本文采用 ControlNet-Tile 图文模型,使用上一阶段生成的视频帧作为条件,根据语言进行优化。ControlNet 基于 Stable Diffusion 模型,只需要对 Stable Diffusion 进行个性化微调(Textual Inversion),即可提取参考图像中的语义信息。个性化微调之后,将视频视为多帧图像,使用 ControlNet 对单个图像进行监督:

图片

另外,因为 ControlNet 使用粗糙的图片作为条件,classifier-free guidance (CFG) 可以使用正常范围(10 左右),而不用与文生图以及文生视频模型一样使用极大的数值(通常是 100)。过大的 CFG 会导致图像过饱和,因此,使用 ControlNet 扩散模型可以缓解过饱和现象,实现更优的生成结果。此阶段的监督由动态阶段的损失和 ControlNet 监督联合而成:

图片

实验结果

作为第一个基于图文的 3D 视频生成模型,本文与两个 baseline 模型和 MAV3D 进行了比较。与其他方法相比,Animate124 有更好的效果。

可视化结果比较

图片

图 2. Animate124 与两个 baseline 比较

图片

图 3.1. Animate124 与 MAV3D 文生 3D 视频比较

图片

图 3.1. Animate124 与 MAV3D 图生 3D 视频比较

量化结果比较

本文使用 CLIP 和人工评价生成的质量,CLIP 指标包括与文本的相似度和检索准确率,与图片的相似度,以及时域一致性。人工评价指标包括与文本的相似度,与图片的相似度,视频质量,动作真实程度以及动作幅度。人工评价表现为单个模型与 Animate124 在对应指标上选择的比例。

与两个 baseline 模型相比,Animate124 在 CLIP 和人工评价上均取得更好的效果。

图片

表 1. Animate124 与两个 baseline 量化比较

总结

Animate124 是首个根据文本描述,将任意图片变成 3D 视频的方法。其采用多种扩散模型进行监督和引导,优化 4D 动态表征网络,从而生成高质量 3D 视频。
产业3D 视频生成Animate124
相关数据
华为机构

华为创立于1987年,是全球领先的ICT(信息与通信)基础设施和智能终端提供商。

https://www.huawei.com/cn/
损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

图像生成技术

图像生成(合成)是从现有数据集生成新图像的任务。

文本生成技术

文本生成是生成文本的任务,其目的是使人类书写文本难以区分。

量化技术

深度学习中的量化是指,用低位宽数字的神经网络近似使用了浮点数的神经网络的过程。

视频生成技术

视频生成是指利用深度学习等技术生成视频的任务。

推荐文章
暂无评论
暂无评论~